Finding Minimum Connected Subgraphs With Ontology Exploration on Large RDF Data
File version
Accepted Manuscript (AM)
Author(s)
Sengupta, N
Ren, X
Wang, J
Cure, O
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
Size
File type(s)
Location
License
Abstract
In this paper, we study the following problem: given a knowledge graph (KG) and a set of input vertices (representing concepts or entities) and edge labels, we aim to find the smallest connected subgraphs containing all of the inputs. This problem plays a key role in KG-based search engines and natural language question answering systems, and it is a natural extension of the Steiner tree problem, which is known to be NP-hard. We present RECON, a system for finding approximate answers. RECON aims at achieving high accuracy with instantaneous response (i.e., sub-second/millisecond delay) over KGs with hundreds of millions edges without resorting to expensive computational resources. Furthermore, when no answer exists due to disconnection between concepts and entities, RECON refines the input to a semantically similar one based on the ontology, and attempts to find answers with respect to the refined input. We conduct a comprehensive experimental evaluation of RECON. In particular we compare it with five existing approaches for finding approximate Steiner trees. Our experiments on four large real and synthetic KGs show that RECON significantly outperforms its competitors and incurs a much smaller memory footprint.
Journal Title
IEEE Transactions on Knowledge and Data Engineering
Conference Title
Book Title
Edition
Volume
Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
Item Access Status
Note
This publication has been entered in Griffith Research Online as an advanced online version.
Access the data
Related item(s)
Subject
Data engineering and data science
Information and computing sciences
Persistent link to this record
Citation
Ren, X; Sengupta, N; Ren, X; Wang, J; Cure, O, Finding Minimum Connected Subgraphs With Ontology Exploration on Large RDF Data, IEEE Transactions on Knowledge and Data Engineering, 2022