An analytical model for the static behaviour of honeycomb sandwich plates with auxetic cores using higher-order shear deformation theories
File version
Version of Record (VoR)
Author(s)
Khoshgoftar, Mohammad Javad
Karimi, Mohammad
Mirzaali, Mohammad Javad
Javanbakht, Zia
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
Size
File type(s)
Location
Abstract
This paper presents an analytical model to investigate the static behaviour of sandwich plates comprised of two isotropic face sheets and a honeycomb core. Through-thickness transverse shear stresses were considered using a unified displacement field with which various plate theories were implemented, i.e., exponential, third-order, hyperbolic, sinusoidal, fifth-order, Mindlin, and the classic plate theory. The equilibrium equations of a simply-supported sandwich panel were derived using the principle of virtual work and Navier solution was obtained under static transverse loading. After validating of the model, various mechanical and geometrical parameters were varied to characterise the behaviour of the structure under regular and auxetic response. It was found that the auxeticity of the core strongly affects the mechanical response, e.g., in controlling deflection, in-plane anisotropy, and Poisson’s ratio. Cell wall angle was found to be most critical parameter that can be used to adjust anisotropy, out-of-plane shear modulus, transverse shear stress distribution, and deflection of the panel. Also the cell aspect ratio controls the sensitivity of the core response to other geometrical variations. In terms of the higher-order theories, the deflection-dependent parameter of the unified formulation seems to have more control of maximum deflection compared to independent rotations. Auxeticity of the core showed some benefits in controlling anisotropy, deflection and providing additional out-of-plane shear rigidity. Overall, since there is not one-to-one relationship between specific values of Poisson’s ratio, anisotropy, and shear rigidity, careful design considerations must be invested to obtain a correct mechanical response.
Journal Title
International Journal of Mechanics and Materials in Design
Conference Title
Book Title
Edition
Volume
Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
© The Author(s) 2023. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Item Access Status
Note
This publication has been entered in Griffith Research Online as an advanced online version.
Access the data
Related item(s)
Subject
Mechanical engineering
Science & Technology
Technology
Engineering, Mechanical
Materials Science, Multidisciplinary
Mechanics
Persistent link to this record
Citation
Karimi, M; Khoshgoftar, MJ; Karimi, M; Mirzaali, MJ; Javanbakht, Z, An analytical model for the static behaviour of honeycomb sandwich plates with auxetic cores using higher-order shear deformation theories, International Journal of Mechanics and Materials in Design, 2023