Effect of ex vivo extracorporeal membrane oxygenation flow dynamics on immune response

No Thumbnail Available
File version
Author(s)
Ki, Katrina K
Passmore, Margaret R
Chan, Chris Hoi Houng
Malfertheiner, Maximillian V
Bouquet, Mahe
Cho, Hwa Jin
Suen, Jacky Y
Fraser, John F
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2019
Size
File type(s)
Location
License
Abstract

Background: Extracorporeal membrane oxygenation is a life-saving support for heart and/or lung failure patients. Despite technological advancement, abnormal physiology persists and has been associated with subsequent adverse events. These include thrombosis, bleeding, systemic inflammatory response syndrome and infection. However, the underlying mechanisms are yet to be elucidated. We aimed to investigate whether the different flow dynamics of extracorporeal membrane oxygenation would alter immune responses, specifically the overall inflammatory response, leukocyte numbers and activation/adhesion surface antigen expression.

Methods: An ex vivo model was used with human whole blood circulating at 37°C for 6 hours at high (4 L/minute) or low (1.5 L/minute) flow dynamics, with serial blood samples taken for analysis.

Results: During high flow, production of interleukin-1β (p < 0.0001), interleukin-6 (p = 0.0075), tumour necrosis factor-α (p = 0.0013), myeloperoxidase (p < 0.0001) and neutrophil elastase (p < 0.0001) were significantly elevated over time compared to low flow, in particular at 6 hours. While the remaining assessments exhibited minute changes between flow dynamics, a consistent trend of modulation in leukocyte subset numbers and phenotype was observed at 6 hours.

Conclusion: We conclude that prolonged circulation at high flow triggers a prominent pro-inflammatory cytokine response and activates neutrophil granule release, but further research is needed to better characterize the effect of flow during extracorporeal membrane oxygenation.

Journal Title

Perfusion

Conference Title
Book Title
Edition
Volume

34

Issue

1_suppl

Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note
Access the data
Related item(s)
Subject

Cardiovascular medicine and haematology

Persistent link to this record
Citation
Collections