An Efficient Algorithm For Solving Dynamic Complex DCOP Problems
File version
Author(s)
Sattar, Abdul
Hansen, David
Stantic, Bela
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Ricardo Baeza-Yates, Jerome Lang, Sushmita Mitra, Simon Parsons, Gabriella Pasi
Date
Size
757598 bytes
File type(s)
application/pdf
Location
Milano, Italy
License
Abstract
Multi Agent Systems and the Distributed Constraint Optimization Problem (DCOP) formalism offer several asynchronous and optimal algorithms for solving naturally distributed optimization problems efficiently. There has been good application of this technology in addressing real world problems in areas like Sensor Networks and Meeting Scheduling. Most of these algorithms however exploit static tree structures and are thus not well suited to modeling and solving problems in rapidly changing domains. Also, while in theory most DCOP algorithms can be extended to handle complex local sub-problems, we argue that this generally results in making their performance sub-optimal, and thus their application less suitable. In this paper we present new measures that emphasize the interconnectedness between each agent's local and interagent sub-problems and use these measures to guide dynamic agent ordering during distributed constraint reasoning. The resulting algorithm, DCDCOP, offers a robust, flexible, and efficient mechanism for modeling and solving dynamic complex problems. Experimental evaluation of the algorithm shows that DCDCOP significantly outperforms ADOPT, the gold standard in search-based DCOP algorithms.
Journal Title
Conference Title
Proceedings. 2009 IEEE/WIC/ACM International Conference on Intelligent Agent Technology
Book Title
Edition
Volume
Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
© 2009 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
Item Access Status
Note
Access the data
Related item(s)
Subject
Information Systems Development Methodologies