Neisseria meningitidis Induces Pathology-Associated Cellular and Molecular Changes in Trigeminal Schwann Cells

Loading...
Thumbnail Image
File version

Version of Record (VoR)

Author(s)
Delbaz, Ali
Chen, Mo
Jen, Freda E-C
Schulz, Benjamin L
Gorse, Alain-Dominique
Jennings, Michael P
St John, James A
Ekberg, Jenny AK
Primary Supervisor
Other Supervisors
Editor(s)
Date
2020
Size
File type(s)
Location
Abstract

Neisseria meningitidis, a common cause of sepsis and bacterial meningitis, infects the meninges and central nervous system (CNS), primarily via paracellular traversal across the blood-brain barrier (BBB) or blood-cerebrospinal fluid barrier. N. meningitidis is often present asymptomatically in the nasopharynx, and the nerves extending between the nasal cavity and the brain constitute an alternative route by which the meningococci may reach the CNS. To date, the cellular mechanisms involved in nerve infection are not fully understood. Peripheral nerve glial cells are phagocytic and are capable of eliminating microorganisms, but some pathogens may be able to overcome this protection mechanism and instead infect the glia, causing cell death or pathology. Here, we show that N. meningitidis readily infects trigeminal Schwann cells (the glial cells of the trigeminal nerve) in vitro in both twodimensional and three-dimensional cell cultures. Infection of trigeminal Schwann cells may be one mechanism by which N. meningitidis is able to invade the CNS. Infection of the cells led to multinucleation and the appearance of atypical nuclei, with the presence of horseshoe nuclei and the budding of nuclei increasing over time. Using sequential window acquisition of all theoretical mass spectra (SWATHMS) proteomics followed by bioinformatics pathway analysis, we showed that N. meningitidis induced protein alterations in the glia that were associated with altered intercellular signaling, cell-cell interactions, and cellular movement. The analysis also suggested that the alterations in protein levels were consistent with changes occurring in cancer. Thus, infection of the trigeminal nerve by N. meningitidis may have ongoing adverse effects on the biology of Schwann cells, which may lead to pathology.

Journal Title

Infection and Immunity

Conference Title
Book Title
Edition
Volume

88

Issue

4

Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement

© 2020 Delbaz et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Item Access Status
Note
Access the data
Related item(s)
Subject

Biological sciences

Agricultural, veterinary and food sciences

Biomedical and clinical sciences

Microbiology

Immunology

Medical microbiology

Science & Technology

Life Sciences & Biomedicine

Immunology

Infectious Diseases

Gram-negative bacteria

Persistent link to this record
Citation

Delbaz, A; Chen, M; Jen, FE-C; Schulz, BL; Gorse, A-D; Jennings, MP; St John, JA; Ekberg, JAK, Neisseria meningitidis Induces Pathology-Associated Cellular and Molecular Changes in Trigeminal Schwann Cells, Infection and Immunity, 2020, 88 (4)

Collections