Steel Bracket Connection on Modular Buildings

Loading...
Thumbnail Image
File version

Version of Record (VoR)

Author(s)
Doh, Jeung-Hwan
Ho, Nhat Minh
Miller, Dane
Peters, Tim
Carlson, David
Lai, Pasteur
Primary Supervisor
Other Supervisors
Editor(s)
Date
2016
Size
File type(s)
Location
License
Abstract

Modular construction methods have been adapted globally for the past few decades and are becoming more common due to their ease of use and flexibility. Structural connections between modules are required for integrity and robustness but details vary depending on the form of the module and the particular application. The behaviour of connections in analysis and design of modular buildings should particularly be taken into account in detail because of their effects on the distribution of internal forces and on structural deformations. The purpose of this paper is to present and analyse the behaviours of an innovative steel bracket connection. Experiments, including shear loading and simply supported tests, were carried out to establish directly the ultimate resistance as well as failure modes of the connections. The finite element software, Strand7, was subsequently utilised to produce models for comparison with test results. A parametric study has been carried out to investigate the effects of varying bolthole dimension and bolthole spacing on the structural behaviours of the steel bracket connection using linear analysis. The model presented in this paper was formed as a baseline for future in-depth investigations to ensure design optimisation of the steel bracket connection.

Journal Title

Journal of Steel Structures & Construction

Conference Title
Book Title
Edition
Volume

2

Issue

2

Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement

© 2016 Doh JH, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Item Access Status
Note
Access the data
Related item(s)
Subject

Structural Engineering

Persistent link to this record
Citation
Collections