Laser cooling of atoms and molecules with ultrafast pulses
File version
Accepted Manuscript (AM)
Author(s)
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
Size
File type(s)
Location
License
Abstract
We propose a laser cooling method for atomic species whose level structure makes traditional laser cooling difficult. For instance, laser cooling of hydrogen requires single-frequency vacuum-ultraviolet light, while multielectron atoms need single-frequency light at many widely separated frequencies. These restrictions can be eased by laser cooling on two-photon transitions with ultrafast pulse trains. Laser cooling of hydrogen, antihydrogen, and many other species appears feasible, and extension of the technique to molecules may be possible.
Journal Title
Physical Review A
Conference Title
Book Title
Edition
Volume
73
Issue
6
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
© 2006 American Physical Society. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal's website for access to the definitive, published version.
Item Access Status
Note
Access the data
Related item(s)
Subject
Mathematical Sciences
Physical Sciences
Chemical Sciences