Absorption imaging of a single atom

Loading...
Thumbnail Image
File version
Author(s)
Streed, Erik W
Jechow, Andreas
Norton, Benjamin G
Kielpinski, David
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2012
Size

3074945 bytes

File type(s)

application/pdf

Location
License
Abstract

Absorption imaging has played a key role in the advancement of science from van Leeuwenhoek's discovery of red blood cells to modern observations of dust clouds in stellar nebulas and Bose-Einstein condensates. Here we show the first absorption imaging of a single atom isolated in a vacuum. The optical properties of atoms are thoroughly understood, so a single atom is an ideal system for testing the limits of absorption imaging. A single atomic ion was confined in an RF Paul trap and the absorption imaged at near wavelength resolution with a phase Fresnel lens. The observed image contrast of 3.1 (3)% is the maximum theoretically allowed for the imaging resolution of our set-up. The absorption of photons by single atoms is of immediate interest for quantum information processing. Our results also point out new opportunities in imaging of light-sensitive samples both in the optical and X-ray regimes.

Journal Title

Nature Communications

Conference Title
Book Title
Edition
Volume

3

Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement

© 2012 Nature Publishing Group. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal website for access to the definitive, published version.

Item Access Status
Note
Access the data
Related item(s)
Subject

Quantum optics and quantum optomechanics

Persistent link to this record
Citation
Collections