Regulation of phosphorus bioavailability by iron nanoparticles in a monomictic lake
File version
Version of Record (VoR)
Author(s)
Hartland, A
Lehto, NJ
Baalousha, M
Sikder, M
Sandwell, D
Mucalo, M
Hamilton, DP
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
Size
File type(s)
Location
Abstract
Dissolved reactive phosphorous (DRP) in lake systems is conventionally considered to predominate over other dissolved P species, however, this view neglects an important set of interactions that occurs between P and reactive iron hydroxide surfaces. This study addresses the coupling of P with dispersed iron nanoparticles in lakes, an interaction that may fundamentally alter the bioavailability of P to phytoplankton. We used diffusive gradients in thin films (DGT) and ultrafiltration to study Fe-P coupling in the water column of a monomictic lake over a hydrological year. Fe and P were predominantly colloidal (particle diameters > ~5 nm < ~20 nm) in both oxic epilimnetic and anaerobic hypolimnetic waters, but they were both DGT-labile under sub-oxic conditions, consistent with diffusion and dissolution of Fe-and-P-bearing colloids within the DGT diffusive gel. During peak stratification, increases in Fe and P bioavailability were spatially and temporally coincident with Fe nanoparticle dissolution and the formation of a deep chlorophyll maximum at 5–8 m depth. These results provide a window into the coupling and decoupling of P with mobile iron colloids, with implications for our understanding of the behaviour of nutrients and their influence on phytoplankton community dynamics.
Journal Title
SCIENTIFIC REPORTS
Conference Title
Book Title
Edition
Volume
8
Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
ARC
Grant identifier(s)
DP190101848
Rights Statement
Rights Statement
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-ative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not per-mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
Item Access Status
Note
Access the data
Related item(s)
Subject
Environmental sciences