Multi-objective fitness-dependent optimizer algorithm
File version
Author(s)
Rashid, Tarik A
Maaroof, Bestan B
Mirjalili, Seyedali
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
Size
File type(s)
Location
License
Abstract
This paper proposes the multi-objective variant of the recently-introduced fitness dependent optimizer (FDO). The algorithm is called a multi-objective fitness dependent optimizer (MOFDO) and is equipped with all five types of knowledge (situational, normative, topographical, domain, and historical knowledge) as in FDO. MOFDO is tested on two standard benchmarks for the performance-proof purpose: classical ZDT test functions, which is a widespread test suite that takes its name from its authors Zitzler, Deb, and Thiele, and on IEEE Congress of Evolutionary Computation benchmark (CEC-2019) multi-modal multi-objective functions. MOFDO results are compared to the latest variant of multi-objective particle swarm optimization, non-dominated sorting genetic algorithm third improvement (NSGA-III), and multi-objective dragonfly algorithm. The comparative study shows the superiority of MOFDO in most cases and comparative results in other cases. Moreover, MOFDO is used for optimizing real-world engineering problems (e.g., welded beam design problems). It is observed that the proposed algorithm successfully provides a wide variety of well-distributed feasible solutions, which enable the decision-makers to have more applicable-comfort choices to consider.
Journal Title
Neural Computing and Applications
Conference Title
Book Title
Edition
Volume
35
Issue
16
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note
Access the data
Related item(s)
Subject
Artificial intelligence
Computer vision and multimedia computation
Machine learning
Science & Technology
Technology
Computer Science, Artificial Intelligence
Computer Science
Persistent link to this record
Citation
Abdullah, JM; Rashid, TA; Maaroof, BB; Mirjalili, S, Multi-objective fitness-dependent optimizer algorithm, Neural Computing and Applications, 2023, 35 (16), pp. 11969-11987