Protection against shiga-toxigenic Escherichia coli by non-genetically modified organism receptor mimic bacterial ghosts

Loading...
Thumbnail Image
File version

Version of Record (VoR)

Author(s)
Paton, Adrienne W
Chen, Austen Y
Wang, Hui
McAllister, Lauren J
Hoeggerl, Florian
Mayr, Ulrike Beate
Shewell, Lucy K
Jennings, Michael P
Morona, Renato
Lubitz, Werner
Patona, James C
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2015
Size
File type(s)
Location
License
Abstract

Shiga-toxigenic Escherichia coli (STEC) causes severe gastrointestinal infections in humans that may lead to life-threatening systemic sequelae, such as the hemolytic uremic syndrome (HUS). Rapid diagnosis of STEC infection early in the course of disease opens a window of opportunity for therapeutic intervention, for example, by administration of agents that neutralize Shiga toxin (Stx) in the gut lumen. We previously developed a recombinant bacterium that expresses a mimic of the Stx receptor globotriaosyl ceramide (Gb3) on its surface through modification of the lipopolysaccharide (A. W. Paton, R. Morona, and J. C. Paton, Nat Med 6:265–270, 2000, http://dx.doi.org/10.1038/73111). This construct was highly efficacious in vivo, protecting mice from otherwise fatal STEC disease, but the fact that it is a genetically modified organism (GMO) has been a barrier to clinical development. In the present study, we have overcome this issue by development of Gb3 receptor mimic bacterial ghosts (BGs) that are not classified as GMOs. Gb3-BGs neutralized Stx1 and Stx2 in vitro with high efficiency, whereas alternative Gb3-expressing non-GMO subbacterial particles (minicells and outer membrane blebs) were ineffective. Gb3-BGs were highly efficacious in a murine model of STEC disease. All mice (10/10) treated with Gb3-BGs survived challenge with a highly virulent O113:H21 STEC strain and showed no pathological signs of renal injury. In contrast, 6/10 mice treated with control BGs succumbed to STEC challenge, and survivors exhibited significant weight loss, neutrophilia, and histopathological evidence of renal damage. Thus, Gb3-BGs offer a non-GMO approach to treatment of STEC infection in humans, particularly in an outbreak setting.

Journal Title

Infection and Immunity

Conference Title
Book Title
Edition
Volume

83

Issue

9

Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement

© 2015 American Society for Microbiology. The attached file is reproduced here in accordance with the copyright policy of the publisher. Please refer to the journal's website for access to the definitive, published version.

Item Access Status
Note
Access the data
Related item(s)
Subject

Biological sciences

Bacteriology

Agricultural, veterinary and food sciences

Biomedical and clinical sciences

Persistent link to this record
Citation
Collections