Expert System for Power Quality Disturbance Classifier
File version
Author(s)
Choong, Florence
Sulaiman, Mohd Shahiman
Mohd-Yasin, Faisal
Kamada, Masaru
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
Size
849986 bytes
File type(s)
application/pdf
Location
License
Abstract
Identification and classification of voltage and current disturbances in power systems are important tasks in the monitoring and protection of power system. Most power quality disturbances are non-stationary and transitory and the detection and classification have proved to be very demanding. The concept of discrete wavelet transform for feature extraction of power disturbance signal combined with artificial neural network and fuzzy logic incorporated as a powerful tool for detecting and classifying power quality problems. This paper employes a different type of univariate randomly optimized neural network combined with discrete wavelet transform and fuzzy logic to have a better power quality disturbance classification accuracy. The disturbances of interest include sag, swell, transient, fluctuation, and interruption. The system is modeled using VHSIC hardware description language (VHDL), a hardware description language, followed by extensive testing and simulation to verify the functionality of the system that allows efficient hardware implementation of the same. This proposed method classifies, and achieves 98.19% classification accuracy for the application of this system on software-generated signals and utility sampled disturbance events.
Journal Title
IEEE Transactions on Power Delivery
Conference Title
Book Title
Edition
Volume
22
Issue
3
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
© 2007 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
Item Access Status
Note
Access the data
Related item(s)
Subject
Electrical and Electronic Engineering not elsewhere classified
Electrical and Electronic Engineering