Measuring Correlation between Microarray Time-series Data using Dominant Spectral Component
File version
Author(s)
Yan, Hong
Liew, Alan Wee-Chung
Szeto, Lap Keung
Yang, Michael
Kong, Richard
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
Size
271968 bytes
File type(s)
application/pdf
Location
Dunedin, New Zealand
License
Abstract
Microarray time-series data provides us a possible means for identification of transcriptional regulation relationships among genes. Currently, the most widely used method in determining whether or not two genes have a potential regulatory relationship is to measure their expressional similarity using Pearson's correlation coefficient. Although this traditional correlation method has been successfully applied to find functionally correlated genes, it does have many limitations. In this paper, we propose a new metric for more reliable measurement of correlation between gene expression data. In our method, time-series expression profiles are decomposed into spectral components and correlations between them are computed in a component-wise sense. This technique has been applied to known gene regulations of yeast and is able to identify many of those missed by the traditional correlation method.
Journal Title
Conference Title
Proceedings of the 2nd Asia-Pacific Bioinformatics Conference APBC2004
Book Title
Edition
Volume
Issue
Thesis Type
Degree Program
School
Publisher link
DOI
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
© 2004 Australian Computer Society Inc. The attached file is posted here in accordance with the copyright policy of the publisher, for your personal use only. No further distribution permitted.Use hypertext link for access to the conference website.