Development of Affinity-Based Chemical Probes for Fluorescence Detection of Human Carbonic Anhydrases
File version
Author(s)
Primary Supervisor
Poulsen, Sally-Ann
Tonissen, Kathryn
Other Supervisors
Editor(s)
Date
Size
File type(s)
Location
License
Abstract
The development of small molecule affinity-based chemical probes as research tools for studying the role of carbonic anhydrases (CAs) in their wider biological context has become an active field of research owing to an increasing awareness of the therapeutic relevance of this enzyme family, particularly in diseases such as glaucoma (CA II) and solid tumors (CA IX, CA XII). High CA isozyme selectivity, low nonspecific labeling, and efficient labeling yield are the characteristics of an ideal chemical probe, however achieving an effective balance of all three properties is challenging. A panel of chemical probes for two-step labeling of CA II or CA IX has been designed to study the impact of probe structural features on the efficiency and specificity of CA-selective labeling when in a challenging environment, including protein mixtures, cell lysates, or live cells. The panel comprised Generation 1 probes (P1 and novel probes P2–P5), Generation 2 linear PAL probes (P6 and novel probes P7–P15), and Generation 3 branched PAL probes (novel probes P16–P20).
Journal Title
Conference Title
Book Title
Edition
Volume
Issue
Thesis Type
Thesis (PhD Doctorate)
Degree Program
Doctor of Philosophy (PhD)
School
School of Natural Sciences
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
The author owns the copyright in this thesis, unless stated otherwise.
Item Access Status
Note
Access the data
Related item(s)
Subject
Carbonic anhydrases
Affinity-based chemical probes
Fluorescence detection