DeepPhoPred: Accurate Deep Learning Model to Predict Microbial Phosphorylation

Loading...
Thumbnail Image
Files
Ahmed10255526.pdf
Embargoed until 2025-09-06
File version

Accepted Manuscript (AM)

Author(s)
Ahmed, Faisal
Sharma, Alok
Shatabda, Swakkhar
Dehzangi, Iman
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2024
Size
File type(s)
Location
License
Abstract

Phosphorylation is a substantial posttranslational modification of proteins that refers to adding a phosphate group to the amino acid side chain after translation process in the ribosome. It is vital to coordinate cellular functions, such as regulating metabolism, proliferation, apoptosis, subcellular trafficking, and other crucial physiological processes. Phosphorylation prediction in a microbial organism can assist in understanding pathogenesis and host-pathogen interaction, drug and antibody design, and antimicrobial agent development. Experimental methods for predicting phosphorylation sites are costly, slow, and tedious. Hence low-cost and high-speed computational approaches are highly desirable. This paper presents a new deep learning tool called DeepPhoPred for predicting microbial phospho-serine (pS), phospho-threonine (pT), and phospho-tyrosine (pY) sites. DeepPhoPred incorporates a two-headed convolutional neural network architecture with the squeeze and excitation blocks followed by fully connected layers that jointly learn significant features from the peptide's structural and evolutionary information to predict phosphorylation sites. Our empirical results demonstrate that DeepPhoPred significantly outperforms the existing microbial phosphorylation site predictors with its highly efficient deep-learning architecture. DeepPhoPred as a standalone predictor, all its source codes, and our employed datasets are publicly available at https://github.com/faisalahm3d/DeepPhoPred.

Journal Title

Proteins

Conference Title
Book Title
Edition
Volume
Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement

This work is covered by copyright. You must assume that re-use is limited to personal use and that permission from the copyright owner must be obtained for all other uses. If the document is available under a specified licence, refer to the licence for details of permitted re-use. If you believe that this work infringes copyright please make a copyright takedown request using the form at https://www.griffith.edu.au/copyright-matters.

Item Access Status
Note

This publication has been entered in Griffith Research Online as an advance online version.

Access the data
Related item(s)
Subject
Persistent link to this record
Citation

Ahmed, F; Sharma, A; Shatabda, S; Dehzangi, I, DeepPhoPred: Accurate Deep Learning Model to Predict Microbial Phosphorylation, Proteins, 2024

Collections