An ANN-Based Backward Prediction Model for Reliable Bridge Management System Implementations Using Limited Inspection Records – Case Studies.

Loading...
Thumbnail Image
File version
Author(s)
Lee, Jaeho
Guan, Hong
Blumenstein, Michael
Loo, Yew-Chaye
Primary Supervisor
Other Supervisors
Editor(s)

IABSE

Date
2008
Size

277430 bytes

File type(s)

application/pdf

Location

Chicago, USA

License
Abstract

Computer-aided Bridge Management Systems (BMSs) as Decision Support Systems (DSSs) for an effective bridge asset management are used to establish the feasible bridge maintenance, repair and rehabilitation (MR&R) strategies which ensure an adequate level of safety at the lowest possible bridge life-cycle cost. To achieve this goal, keeping up-to-date bridge condition ratings are crucial for a BMS software package. Although most bridge agencies in the past have conducted inspections and maintenance, the form of such bridge inspection records is dissimilar to those required by BMSs. These data inconsistencies inevitably slow down the BMS implementations. This paper presents an Artificial Neural Network (ANN) based prediction model, called the Backward Prediction Model (BPM), for generating unavailable years of historical bridge condition ratings using very limited existing inspection records. The BPM employed historical non-bridge datasets such as traffic volumes, populations and climates, to establish correlations with the existing bridge condition ratings from the very limited bridge inspection records. Such correlations can help fill the condition rating gaps required for an effective and accurate BMS implementation. This paper covers a brief description of the BPM methodology and presents nine case studies. The outcome of this study can help establish a comprehensive condition rating database, which will in turn assist to predict reliable future bridge depreciations.

Journal Title
Conference Title

Creating and Renewing Urban Structures

Book Title
Edition
Volume
Issue
Thesis Type
Degree Program
School
DOI
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement

© 2008 IABSE. The attached file is posted here in accordance with the copyright policy of the publisher, for your personal use only. No further distribution permitted. Use hypertext link for access to publisher's website. This article was first published in the 17th Congress Report of IABSE - Chicago 2008 on Creating and Renewing Urban Structures - Tall Buildings, Bridges and Infrastructure (www.iabse.org/publications/congressreorts/17cong.php).

Item Access Status
Note
Access the data
Related item(s)
Subject

Infrastructure Engineering and Asset Management

Persistent link to this record
Citation