Robust Visual Similarity Retrieval in Single Model Face Databases
File version
Author(s)
Qi, YT
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Dr.Robert S Ledley
Date
Size
File type(s)
Location
License
Abstract
In this paper, we introduce a novel visual similarity measuring technique to retrieve face images in photo album databases for law enforcement. Though much work is being done on face similarity matching techniques, little attention is given to the design of face matching schemes suitable for visual retrieval in single model databases where accuracy, robustness to scale and environmental changes, and computational efficiency are three important issues to be considered. This paper presents a robust face retrieval approach using structural and spatial point correspondence in which the directional corner points (DCPs) are generated for efficient face coding and retrieval. A complete investigation on the proposed method is conducted, which covers face retrieval under controlled/ideal condition, scale variations, environmental changes and subject actions. The system performance is compared with the performance of the eigenface method. It is an attractive finding that the proposed DCP retrieval technique has performed superior to the eigenface method in most of the comparison experiments. This research demonstrates that the proposed DCP approach provides a new way, which is both robust to scale and environmental changes, and efficient in computation, for retrieving human faces in single model databases.
Journal Title
Pattern Recognition
Conference Title
Book Title
Edition
Volume
38
Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note
Access the data
Related item(s)
Subject
Information systems