Deep Learning for Causal Discovery in Texts

Loading...
Thumbnail Image
File version
Primary Supervisor

Wang, Junhu

Other Supervisors

Islam, Md Saiful

Editor(s)
Date
2022-06-21
Size
File type(s)
Location
License
Abstract

Causality detection in text data is a challenging natural language processing task. This is a trivial task for human beings as they acquire vast background knowledge throughout their lifetime. For example, a human knows from their experience that heavy rain may cause flood or plane accidents may cause death. However, it is challenging to automatically detect such causal relationships in texts due to the availability of limited contextual information and the unstructured nature of texts. The task is even more challenging for social media short texts such as Tweets as often they are informal, short, and grammatically incorrect. Generating hand-crafted linguistic rules is an option but is not always effective to detect causal relationships in text because they are rigid and require grammatically correct sentences. Also, the rules are often domain-specific and not always portable to another domain. Therefore, supervised learning techniques are more appropriate in the above scenario. Traditional machine learning-based model also suffers from the high dimensional features of texts. This is why deep learning-based approaches are becoming increasingly popular for natural language processing tasks such as causality detection. However, deep learning models often require large datasets with high-quality features to perform well. Extracting deeply-learnable causal features and applying them to a carefully designed deep learning model is important. Also, preparing a large human-labeled training dataset is expensive and time-consuming. Even if a large training dataset is available, it is computationally expensive to train a deep learning model due to the complex structure of neural networks. We focus on addressing the following challenges: (i) extracting highquality causal features, (ii) designing an effective deep learning model to learn from the causal features, and (iii) reducing the dependency on large training datasets. Our main goals in this thesis are as follows: (i) we aim to study the different aspects of causality and causal discovery in text in depth. (ii) We aim to develop strategies to model causality in text, (iii) and finally, we aim to develop frameworks to design effective and efficient deep neural network structures to discover causality in texts.

Journal Title
Conference Title
Book Title
Edition
Volume
Issue
Thesis Type

Thesis (PhD Doctorate)

Degree Program

Doctor of Philosophy (PhD)

School

School of Info & Comm Tech

Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement

The author owns the copyright in this thesis, unless stated otherwise.

Item Access Status
Note
Access the data
Related item(s)
Subject

Causality detection

language processing task

text

deep learning-based approaches

model causality in text

neural network structures

Persistent link to this record
Citation