Electrostatic layer-by-layer deposition and electrochemical characterization of thin films composed of MnO2 nanoparticles in a room-temperature ionic liquid
File version
Author(s)
Bazito, Fernanda FC
Ponzio, Eduardo A
Torresi, Roberto M
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
Size
File type(s)
Location
License
Abstract
Thin films of MnO2 nanoparticles were grown using the layer-by-layer method with poly(diallyldimetylammonium) as the intercalated layer. The film growth was followed by UV-vis, electrochemical quartz crystal microbalance (EQCM), and atomic force microscopy. Linear growth due to electrostatic immobilization of layers was observed up to 30 bilayers, but electrical connectivity was maintained only for 12 MnO2/PPDA bilayers. The electrochemical characterization of this film in 1-butyl-2,3-dimethyl-imidazolium (BMMI) bis(trifluoromethanesulfonyl)imide (TFSI) (BMMITFSI) with and without addition of a lithium salt indicated a higher electrochemical response of the nanostructured electrode in the lithium-containing electrolyte. On the basis of EQCM experiments, it was possible to confirm that the charge compensation process is achieved mainly by the TFSI anion at short times (< 2 s) and by BMMI and lithium cations at longer times. The fact that large ions like TFSI and BMMI participate in the electroneutrality is attributed to the redox reaction that occurs at the superficial sites and to the high concentration of these species compared to that of lithium cations. © 2008 American Chemical Society.
Journal Title
Langmuir
Conference Title
Book Title
Edition
Volume
24
Issue
7
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note
Access the data
Related item(s)
Subject
Science & Technology
Physical Sciences
Chemistry, Multidisciplinary
Chemistry, Physical
Persistent link to this record
Citation
Benedetti, TM; Bazito, FFC; Ponzio, EA; Torresi, RM, Electrostatic layer-by-layer deposition and electrochemical characterization of thin films composed of MnO2 nanoparticles in a room-temperature ionic liquid, Langmuir, 2008, 24 (7), pp. 3602-3610