Anti-MRSA and anti-TB metabolites from marine-derived Verrucosispora sp. MS100047

No Thumbnail Available
File version
Author(s)
Huang, Pei
Xie, Feng
Ren, Biao
Wang, Qian
Wang, Jian
Wang, Qi
Abdel-Mageed, Wael M
Liu, Miaomiao
Han, Jianying
Oyeleye, Ayokunmi
Shen, Jinzhao
Song, Fuhang
Dai, Huanqin
Liu, Xueting
Zhang, Lixin
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2016
Size
File type(s)
Location
License
Abstract

Microbes belonging to the genus Verrucosispora possess significant chemical diversity and biological properties. They have attracted the interests of many researchers and are becoming promising resources in the marine natural product research field. A bioassay-guided isolation from the crude extract of Verrucosispora sp. strain MS100047, isolated from sediments collected from the South China Sea, has led to the identification of a new salicylic derivative, glycerol 1-hydroxy-2,5-dimethyl benzoate (1), along with three known compounds, brevianamide F (2), abyssomicin B (3), and proximicin B (4). Compound 1 showed selective activity against methicillin-resistant Staphylococcus aureus (MRSA) with a minimum inhibitory concentration (MIC) value of 12.5 μg/mL. Brevianamide F (2), which was isolated from actinomycete for the first time, showed a good anti-BCG activity with a MIC value of 12.5 μg/mL that has not been reported previously in literatures. Proximicin B (4) showed significant anti-MRSA (MIC = 3.125 μg/mL), anti-BCG (MIC = 6.25 μg/mL), and anti-tuberculosis (TB) (MIC = 25 μg/mL) activities. This is the first report on the anti-tubercular activities of proximicins. In addition, Verrucosispora sp. strain MS100047 was found to harbor 18 putative secondary metabolite gene clusters based on genomic sequence analysis. These include the biosynthetic loci encoding polyketide synthase (PKS) and non-ribosomal peptide synthetase (NRPS) consistent with abyssomicins and proximicins, respectively. The biosynthetic pathways of these isolated compounds have been proposed. These results indicate that MS100047 possesses a great potential as a source of active secondary metabolites.

Journal Title

Applied Microbiology and Biotechnology

Conference Title
Book Title
Edition
Volume

100

Issue

17

Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note
Access the data
Related item(s)
Subject

Microbiology not elsewhere classified

Persistent link to this record
Citation
Collections