Impedance and conductivity of bovine myocardium during freezing and thawing at slow rates - implications for cardiac cryo-ablation

No Thumbnail Available
File version
Author(s)
Fischer, G
Handler, M
Johnston, PR
Baumgarten, D
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2019
Size
File type(s)
Location
License
Abstract

Increasing impedance during freezing might be a valuable marker for guiding cardiac cryo-ablation. We provide model based insights on how decreasing temperature below the freezing point of tissue relates to the percentage of frozen water. Furthermore, we provide experimental data for comparing this percentage with the increase in impedance. Measurements were performed on a bovine tissue sample at frequencies between 5 and 80 kHz. Slow cooling and heating rates were applied to minimize temperature gradients in the myocardial sample and to allow accurate assessment of the freezing point. Computer simulation was applied to link impedance with temperature dependent conductivities. The osmotic virial equation was used to estimate the percentage of frozen water. Measurements identified the freezing point at −0.6 ∘C. At −5 ∘C, impedance rose by more than a factor of ten compared to that at the freezing point and the percentage of frozen water was estimated as being 89%. At −49 ∘C impedance had increased by up to three orders of magnitude and ice formation was most pronounced in the extracellular space. Progressive ice formation in tissue is reflected by a large increase in impedance, and impedance increases monotonically with the percentage of frozen water. Its analysis allows for experimental assessment of factors relevant to cell death. Solid ice contributes to the rupture of the micro-vasculature, while phase shifts reflect concentration differences between extra- and intracellular space driving osmotic water transfer across cell membranes.

Journal Title

Medical Engineering & Physics

Conference Title
Book Title
Edition
Volume

74

Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note
Access the data
Related item(s)
Subject

Physical sciences

Engineering

Biomedical and clinical sciences

Science & Technology

Technology

Engineering, Biomedical

Cryo-ablation

Persistent link to this record
Citation

Fischer, G; Handler, M; Johnston, PR; Baumgarten, D, Impedance and conductivity of bovine myocardium during freezing and thawing at slow rates - implications for cardiac cryo-ablation, Medical Engineering & Physics, 2019, 74, pp. 89-98

Collections