Integrating edge effects into studies of habitat fragmentation: a test using meiofauna in seagrass
File version
Author(s)
Hindell, JS
Macreadie, PI
Jenkins, GP
Connolly, RM
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
Size
168845 bytes
File type(s)
application/pdf
Location
License
Abstract
Habitat fragmentation is thought to be an important process structuring landscapes in marine and estuarine environments, but effects on fauna are poorly understood, in part because of a focus on patchiness rather than fragmentation. Furthermore, despite concomitant increases in perimeter:area ratios with fragmentation, we have little understanding of how fauna change from patch edges to interiors during fragmentation. Densities of meiofauna were measured at different distances across the edges of four artificial seagrass treatments [continuous, fragmented, procedural control (to control for disturbance by fragmenting then restoring experimental plots), and patchy] 1 day, 1 week and 1 month after fragmentation. Experimental plots were established 1 week prior to fragmentation/disturbance. Samples were numerically dominated by harpacticoid copepods, densities of which were greater at the edge than 0.5 m into patches for continuous, procedural control and patchy treatments; densities were similar between the edge and 0.5 m in fragmented patches. For taxa that demonstrated edge effects, densities exhibited log-linear declines to 0.5 m into a patch with no differences observed between 0.5 m and 1 m into continuous treatments. In patchy treatments densities were similar at the internal and external edges for many taxa. The strong positive edge effect (higher densities at edge than interior) for taxa such as harpacticoid copepods implies some benefit of patchy landscapes. But the lack of edge effects during patch fragmentation itself demonstrates the importance of the mechanisms by which habitats become patchy.
Journal Title
Oecologia
Conference Title
Book Title
Edition
Volume
159
Issue
4
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
© 2009 Springer Berlin / Heidelberg. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. The original publication is available at www.springerlink.com
Item Access Status
Note
Access the data
Related item(s)
Subject
Ecology
Marine and estuarine ecology (incl. marine ichthyology)