The validity of automated tackle detection in women's rugby league

No Thumbnail Available
File version
Author(s)
Cummins, Cloe
Charlton, Glen
Naughton, Mitchell
Jones, Ben
Minahan, Clare
Murphy, Aron
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2020
Size
File type(s)
Location
License
Abstract

This study assessed the validity of microtechnology devices to automatically detect and differentiate tackles in elite women's rugby league match-play. Elite female players (n = 17) wore a microtechnology device (OptimEye S5 device; Catapult Group International) during a representative match, which involved a total of 512 tackles of which 365 were defensive and 147 were attacking. Tackles automatically detected by Catapult's tackle detection algorithm and video-coded tackles were time synchronized. True positive, false negative and false positive events were utilized to calculate sensitivity (i.e., when a tackle occurred, did the algorithm correctly detect this event) and precision (i.e., when the algorithm reported a tackle, was this a true event based on video-coding). Of the 512 video-derived attacking and defensive tackle events, the algorithm was able to detect 389 tackles. The algorithm also produced 81 false positives and 123 false negatives. As such when a tackle occurred, the algorithm correctly identified 76.0% of these events. When the algorithm reported that a tackle occurred, this was an actual event in 82.8% of circumstances. Across all players, the algorithm was more sensitive to the detection of an attacking event (sensitivity: 78.2%) as opposed to a defensive event (sensitivity: 75.1%). The sensitivity and precision of the algorithm was higher for forwards (sensitivity: 81.8%; precision: 92.1%) when compared with backs (sensitivity: 64.5%; precision: 66.1%). Given that understanding the tackle demands of rugby league is imperative from both an injury-prevention and physical-conditioning perspective there is an opportunity to develop a specific algorithm for the detection of tackles within women's rugby league.

Journal Title

Journal of Strength and Conditioning Research

Conference Title
Book Title
Edition
Volume
Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note
Access the data
Related item(s)
Subject

Medical physiology

Sports science and exercise

collision

contact sport

female

precision

sensitivity

Persistent link to this record
Citation

Cummins, C; Charlton, G; Naughton, M; Jones, B; Minahan, C; Murphy, A, The validity of automated tackle detection in women's rugby league, Journal of Strength and Conditioning Research, 2020.

Collections