A comparison of two informative SNP-based strategies for typing Pseudomonas aeruginosa isolates from patients with cystic fibrosis
File version
Author(s)
Kidd, TJ
Moser, RJ
Ramsay, KA
Gibson, KM
Anuj, S
Bell, SC
Wainwright, CE
Grimwood, K
Nissen, M
Sloots, TP
Whiley, DM
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
Size
236310 bytes
File type(s)
application/pdf
Location
Abstract
Background Molecular typing is integral for identifying Pseudomonas aeruginosa strains that may be shared between patients with cystic fibrosis (CF). We conducted a side-by-side comparison of two P. aeruginosa genotyping methods utilising informative-single nucleotide polymorphism (SNP) methods; one targeting 10 P. aeruginosa SNPs and using real-time polymerase chain reaction technology (HRM10SNP) and the other targeting 20 SNPs and based on the Sequenom MassARRAY platform (iPLEX20SNP). Methods An in-silico analysis of the 20 SNPs used for the iPLEX20SNP method was initially conducted using sequence type (ST) data on the P. aeruginosa PubMLST website. A total of 506 clinical isolates collected from patients attending 11 CF centres throughout Australia were then tested by both the HRM10SNP and iPLEX20SNP assays. Type-ability and discriminatory power of the methods, as well as their ability to identify commonly shared P. aeruginosa strains, were compared. Results The in-silico analyses showed that the 1401 STs available on the PubMLST website could be divided into 927 different 20-SNP profiles (D-value?=?0.999), and that most STs of national or international importance in CF could be distinguished either individually or as belonging to closely related single- or double-locus variant groups. When applied to the 506 clinical isolates, the iPLEX20SNP provided better discrimination over the HRM10SNP method with 147 different 20-SNP and 92 different 10-SNP profiles observed, respectively. For detecting the three most commonly shared Australian P. aeruginosa strains AUST-01, AUST-02 and AUST-06, the two methods were in agreement for 80/81 (98.8%), 48/49 (97.8%) and 11/12 (91.7%) isolates, respectively. Conclusions The iPLEX20SNP is a superior new method for broader SNP-based MLST-style investigations of P. aeruginosa. However, because of convenience and availability, the HRM10SNP method remains better suited for clinical microbiology laboratories that only utilise real-time PCR technology and where the main interest is detection of the most highly-prevalent P. aeruginosa CF strains within Australian clinics.
Journal Title
BMC Infectious Diseases
Conference Title
Book Title
Edition
Volume
14
Issue
307
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
© 2014 Syrmis et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Item Access Status
Note
Access the data
Related item(s)
Subject
Microbiology
Clinical sciences
Medical microbiology
Public health