Finite-time quantum-to-classical transition for a Schrödinger-cat state

Loading...
Thumbnail Image
File version
Author(s)
Paavola, Janika
Hall, Michael JW
Paris, Matteo GA
Maniscalco, Sabrina
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2011
Size

545672 bytes

File type(s)

application/pdf

Location
License
Abstract

The transition from quantum to classical, in the case of a quantum harmonic oscillator, is typically identified with the transition from a quantum superposition of macroscopically distinguishable states, such as the Schr诤inger-cat state, into the corresponding statistical mixture. This transition is commonly characterized by the asymptotic loss of the interference term in the Wigner representation of the cat state. In this paper we show that the quantum-to-classical transition has different dynamical features depending on the measure for nonclassicality used. Measures based on an operatorial definition have well-defined physical meaning and allow a deeper understanding of the quantum-to-classical transition. Our analysis shows that, for most nonclassicality measures, the Schr诤inger-cat state becomes classical after a finite time. Moreover, our results challenge the prevailing idea that more macroscopic states are more susceptible to decoherence in the sense that the transition from quantum to classical occurs faster. Since non classicality is a prerequisite for entanglement generation our results also bridge the gap between decoherence, which is lost only asymptotically, and entanglement, which may show a "sudden death." In fact, whereas the loss of coherences still remains asymptotic, we emphasize that the transition from quantum to classical can indeed occur at a finite time.

Journal Title

Physical Review A

Conference Title
Book Title
Edition
Volume

84

Issue

1

Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement

© 2011 American Physical Society. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal's website for access to the definitive, published version.

Item Access Status
Note
Access the data
Related item(s)
Subject

Mathematical sciences

Physical sciences

Quantum optics and quantum optomechanics

Quantum physics not elsewhere classified

Chemical sciences

Persistent link to this record
Citation
Collections