A long state vector Kalman filter for speech enhancement
File version
Author(s)
Paliwal, Kuldip K
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Janet Fletcher, Deborah Loakes
Date
Size
656776 bytes
File type(s)
application/pdf
Location
Brisbane, AUSTRALIA
License
Abstract
In this paper, we investigate a long state vector Kalman filter for the enhancement of speech that has been corrupted by white and coloured noise. It has been reported in previous studies that a vector Kalman filter achieves better enhancement than the scalar Kalman filter and it is expected that by increasing the state vector length, one may improve the enhancement performance even further. However, any enhancement improvement that may result from an increase in state vector length is constrained by the typical use of short, non-overlapped speech frames, as the autocorrelation coefficient estimates tend to become less reliable at higher lags. We propose to overcome this problem by incorporating an analysis-modification-synthesis framework, where long, overlapped frames are used instead. Our enhancement experiments based on the NOIZEUS corpus show that the proposed long state vector Kalman filter achieves higher mean SNR and PESQ scores than the scalar and short state vector Kalman filter, therefore fulfilling the notion that a longer state vector can lead to better enhancement.
Journal Title
Conference Title
INTERSPEECH 2008: 9TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION 2008, VOLS 1-5
Book Title
Edition
Volume
Issue
Thesis Type
Degree Program
School
DOI
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
© 2008 ISCA and the Authors. The attached file is reproduced here in accordance with the copyright policy of the publisher. For information about this conference please refer to the conference’s website or contact the authors.