General Learning Equilibrium Optimizer: A New Feature Selection Method for Biological Data Classification

No Thumbnail Available
File version
Author(s)
Too, J
Mirjalili, S
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2020
Size
File type(s)
Location
License
Abstract

Finding relevant information from biological data is a critical issue for the study of disease diagnosis, especially when an enormous number of biological features are involved. Intentionally, the feature selection can be an imperative preprocessing step before the classification stage. Equilibrium optimizer (EO) is a recently established metaheuristic algorithm inspired by the principle of dynamic source and sink models when measuring the equilibrium states. In this research, a new variant of EO called general learning equilibrium optimizer (GLEO) is proposed as a wrapper feature selection method. This approach adopts a general learning strategy to help the particles to evade the local areas and improve the capability of finding promising regions. The proposed GLEO aims to identify a subset of informative biological features among a large number of attributes. The performance of the GLEO algorithm is validated on 16 biological datasets, where nine of them represent high dimensionality with a smaller number of instances. The results obtained show the excellent performance of GLEO in terms of fitness value, accuracy, and feature size in comparison with other metaheuristic algorithms.

Journal Title

Applied Artificial Intelligence

Conference Title
Book Title
Edition
Volume
Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note

This publication has been entered as an advanced online version in Griffith Research Online.

Access the data
Related item(s)
Subject

Artificial intelligence

Cognitive and computational psychology

Applied computing

Machine learning

Persistent link to this record
Citation

Too, J; Mirjalili, S, General Learning Equilibrium Optimizer: A New Feature Selection Method for Biological Data Classification, Applied Artificial Intelligence, 2020

Collections