Solving the one dimensional vertical suspended sediment mixing equation with arbitrary eddy diffusivity profiles using temporal normalized physics-informed neural networks

No Thumbnail Available
File version
Author(s)
Zhang, S
Deng, J
Li, X
Zhao, Z
Wu, J
Li, W
Wang, YG
Jeng, DS
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2024
Size
File type(s)
Location
License
Abstract

Analytical solutions are practical tools in ocean engineering, but their derivation is often constrained by the complexities of the real world. This underscores the necessity for alternative approaches. In this study, the potential of Physics-Informed Neural Networks (PINN) for solving the one-dimensional vertical suspended sediment mixing (settling-diffusion) equation which involves simplified and arbitrary vertical Ds profiles is explored. A new approach of temporal Normalized Physics-Informed Neural Networks (T-NPINN), which normalizes the time component is proposed, and it achieves a remarkable accuracy (Mean Square Error of 10 − 5 and Relative Error Loss of 10 − 4 ). T-NPINN also proves its ability to handle the challenges posed by long-duration spatiotemporal models, which is a formidable task for conventional PINN methods. In addition, the T-NPINN is free of the limitations of numerical methods, e.g., the susceptibility to inaccuracies stemming from the discretization and approximations intrinsic to their algorithms, particularly evident within intricate and dynamic oceanic environments. The demonstrated accuracy and versatility of T-NPINN make it a compelling complement to numerical techniques, effectively bridging the gap between analytical and numerical approaches and enriching the toolkit available for oceanic research and engineering.

Journal Title

Physics of Fluids

Conference Title
Book Title
Edition
Volume

36

Issue

1

Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note
Access the data
Related item(s)
Subject
Persistent link to this record
Citation

Zhang, S; Deng, J; Li, X; Zhao, Z; Wu, J; Li, W; Wang, YG; Jeng, DS, Solving the one dimensional vertical suspended sediment mixing equation with arbitrary eddy diffusivity profiles using temporal normalized physics-informed neural networks, Physics of Fluids, 2024, 36 (1), pp. 017132

Collections