Frataxin and the molecular mechanism of mitochondrial iron-loading in Friedreich's ataxia
File version
Author(s)
Kovacevic, Zaklina
Sahni, Sumit
Lane, Darius JR
Merlot, Angelica M
Kalinowski, Danuta S
Huang, Michael L-H
Richardson, Des R
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
Size
File type(s)
Location
License
Abstract
The mitochondrion is a major site for the metabolism of the transition metal, iron, which is necessary for metabolic processes critical for cell vitality. The enigmatic mitochondrial protein, frataxin, is known to play a significant role in both cellular and mitochondrial iron metabolism due to its iron-binding properties and its involvement in iron-sulfur cluster (ISC) and heme synthesis. The inherited neuro- and cardio-degenerative disease, Friedreich's ataxia (FA), is caused by the deficient expression of frataxin that leads to deleterious alterations in iron metabolism. These changes lead to the accumulation of inorganic iron aggregates in the mitochondrial matrix that are presumed to play a key role in the oxidative damage and subsequent degenerative features of this disease. Furthermore, the concurrent dys-regulation of cellular antioxidant defense, which coincides with frataxin deficiency, exacerbates oxidative stress. Hence, the pathogenesis of FA underscores the importance of the integrated homeostasis of cellular iron metabolism and the cytoplasmic and mitochondrial redox environments. This review focuses on describing the pathogenesis of the disease, the molecular mechanisms involved in mitochondrial iron-loading and the dys-regulation of cellular antioxidant defense due to frataxin deficiency. In turn, current and emerging therapeutic strategies are also discussed.
Journal Title
Clinical Science
Conference Title
Book Title
Edition
Volume
130
Issue
11
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note
Access the data
Related item(s)
Subject
Biomedical and clinical sciences
Pharmacology and pharmaceutical sciences
Science & Technology
Life Sciences & Biomedicine
Medicine, Research & Experimental
Research & Experimental Medicine
frataxin
Persistent link to this record
Citation
Chiang, S; Kovacevic, Z; Sahni, S; Lane, DJR; Merlot, AM; Kalinowski, DS; Huang, ML-H; Richardson, DR, Frataxin and the molecular mechanism of mitochondrial iron-loading in Friedreich's ataxia, Clinical Science, 2016, 130 (11), pp. 853-870