YesU from Bacillus subtilis preferentially binds fucosylated glycans

Loading...
Thumbnail Image
File version
Version of Record (VoR)
Author(s)
Tiralongo, Joe
Cooper, Oren
Litfin, Tom
Yang, Yuedong
King, Rebecca
Zhan, Jian
Zhao, Huiying
Bovin, Nicolai
Day, Christopher J
Zhou, Yaoqi
Primary Supervisor
Other Supervisors
Editor(s)
Date
2018
Size
File type(s)
Location
License
http://creativecommons.org/licenses/by/4.0/
Abstract

The interaction of carbohydrate-binding proteins (CBPs) with their corresponding glycan ligands is challenging to study both experimentally and computationally. This is in part due to their low binding affinity, high flexibility, and the lack of a linear sequence in carbohydrates, as exists in nucleic acids and proteins. We recently described a function-prediction technique called SPOT-Struc that identifies CBPs by global structural alignment and binding-affinity prediction. Here we experimentally determined the carbohydrate specificity and binding affinity of YesU (RCSB PDB ID: 1oq1), an uncharacterized protein from Bacillus subtilis that SPOT-Struc predicted would bind high mannose-type glycans. Glycan array analyses however revealed glycan binding patterns similar to those exhibited by fucose (Fuc)-binding lectins, with SPR analysis revealing high affinity binding to Lewisx and lacto-N-fucopentaose III. Structure based alignment of YesU revealed high similarity to the legume lectins UEA-I and GS-IV, and docking of Lewisx into YesU revealed a complex structure model with predicted binding affinity of −4.3 kcal/mol. Moreover the adherence of B. subtilis to intestinal cells was significantly inhibited by Lex and Ley but by not non-fucosylated glycans, suggesting the interaction of YesU to fucosylated glycans may be involved in the adhesion of B. subtilis to the gastrointestinal tract of mammals.

Journal Title
Scientific Reports
Conference Title
Book Title
Edition
Volume
Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
© The authors 2018. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
Rights Statement
Item Access Status
Note
Access the data
Related item(s)
Subject
Other biological sciences not elsewhere classified
Persistent link to this record
Citation
Collections