Examination of net volume reduction of gravity-type open-net fish cages under sea currents

Loading...
Thumbnail Image
File version

Accepted Manuscript (AM)

Author(s)
Chen, D
Wang, CM
Zhang, H
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2021
Size
File type(s)
Location
Abstract

Owing to heavy criticisms of nearshore fish farming for causing environmental pollution and encroaching on sea space used for shipping, boating, recreational sea activities and marine eco-tourism, offshore fish farming has now being seriously considered. Moreover an offshore site provides more pristine water and greater space for increased fish production. However, offshore fish farming poses challenges such as a more energetic sea environment. A higher sea current can lead to large deformation of fish net and hence a net volume reduction which compromises fish welfare. With the view to identifying the effects of various important parameters on net volume reduction of a gravity-type open-net fish cage, this paper adopts a mass-spring model for the dynamic analysis of current-induced net deformations of cylindrical fish nets with discrete weights hanging at the bottom edge of the nets. In this model, the net mesh comprises knot nodes and bar nodes connected by tension-only massless springs. The spring stiffness is determined from the net bar diameters and material properties. The current-induced loads are applied to each node and calculated based on Morrison's equation. The governing equation system for nodal motions can be established according to Newton's second law, and solved by using the Runge-Kutta method for the real-time net deformations. The effects of net string reinforcements, weight distributions and net shapes on the net volume reduction are studied with the view to shed insights into how one may improve fish cage designs to effectively mitigate net deformation under high sea current speeds in offshore fish farming sites.

Journal Title

Aquacultural Engineering

Conference Title
Book Title
Edition
Volume

92

Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement

© 2020 Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence (http://creativecommons.org/licenses/by-nc-nd/4.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, providing that the work is properly cited.

Item Access Status
Note
Access the data
Related item(s)
Subject

Fisheries sciences

Maritime engineering

Persistent link to this record
Citation

Chen, D; Wang, CM; Zhang, H, Examination of net volume reduction of gravity-type open-net fish cages under sea currents, Aquacultural Engineering, 2021, 92, pp. 102128

Collections