Meshfree Model for Wave-Seabed Interactions Around Offshore Pipelines
File version
Author(s)
Jeng, Dong-Sheng
Tsai, Chia-Cheng
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
Size
File type(s)
Location
Abstract
The evaluation of the wave-induced seabed instability around a submarine pipeline is particularly important for coastal engineers involved in the design of pipelines protection. Unlike previous studies, a meshfree model is developed to investigate the wave-induced soil response in the vicinity of a submarine pipeline. In the present model, Reynolds-Averaged Navier-Stokes (RANS) equations are employed to simulate the wave loading, while Biot’s consolidation equations are adopted to investigate the wave-induced soil response. Momentary liquefaction around an offshore pipeline in a trench is examined. Validation of the present seabed model was conducted by comparing with the analytical solution, experimental data, and numerical models available in the literature, which demonstrates the capacity of the present model. Based on the newly proposed model, a parametric study is carried out to investigate the influence of soil properties and wave characteristics for the soil response around the pipeline. The numerical results conclude that the liquefaction depth at the bottom of the pipeline increases with increasing water period (T) and wave height (H), but decreases as backfilled depth ( Hb ), degree of saturation ( Sr ) and soil permeability (K) increase.
Journal Title
JOURNAL OF MARINE SCIENCE AND ENGINEERING
Conference Title
Book Title
Edition
Volume
7
Issue
4
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
c 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Item Access Status
Note
Access the data
Related item(s)
Subject
Oceanography
Fisheries sciences
Maritime engineering