The Role of G3BPs in the Stress Response Pathway
File version
Author(s)
Primary Supervisor
Kennedy, Hendrick
Mellick, George
Other Supervisors
Lopez, Alejandro
Editor(s)
Date
Size
File type(s)
Location
License
Abstract
The ras-GTPase SH3-domain Binding Proteins (G3BP) are a family of RNA-binding proteins that have been implicated in multiple cellular activities ranging from signal transduction to regulation of messenger RNA (mRNA). G3BPs were named after their interaction with the SH3 domain of Ras-GTPase-activating protein; however recent research did not find this interaction. All three members of the G3BPs family, G3BP1, G3BP2a and G3BP2b, share structural similarities with each other by having four distinct regions (1) the Nuclear Transporting Factor 2, (NTF2) domain at the N-terminal, (2) the acidic and proline-rich domain in the centre, (3) the RNA recognition motif (RRM) and (4) the arginine glycine (RGG)-rich region rich at the C-terminal. The presence of the NTF2 domain in its structure suggests G3BP might play a role in nucleocytoplasmic transportation, which was observed after serum stimulation where G3BP1 was translocated to the nucleus from the cytoplasm. The RNA recognition motif (RRM) region plays a vital role in its interaction with the target RNA. The RGG-rich box is a region rich in arginine and glycine residues, which plays a role assisting RRM in interactions with protein or RNA. G3BP1 is found to be overexpressed in many cancers, including breast cancer, and head and neck tumours, as well as cell lines derived from human lung, prostrate, colon, thyroid and breast cancer. G3BPs have also been implicated in translational control within differentiating neurons, suggesting that G3BP may play several roles in controlling the translational fate of its cargo and that its role may be cell-specific. G3BP1 has also been found in [beta]-integrin-induced adhesion complexes. This information highlights G3BPs as a dynamic protein that is involved in several biological functions.
Journal Title
Conference Title
Book Title
Edition
Volume
Issue
Thesis Type
Thesis (PhD Doctorate)
Degree Program
Doctor of Philosophy (PhD)
School
School of Natural Sciences
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
The author owns the copyright in this thesis, unless stated otherwise.
Item Access Status
Public
Note
Access the data
Related item(s)
Subject
Ras-GTPase SH3-domain Binding Proteins (G3BP)
RNA-binding proteins
Ras-GTPase-activating protein
Cancer