Antimicrobial responses of peripheral and central nervous system glia against Staphylococcus aureus
File version
Version of Record (VoR)
Author(s)
Chacko, Anu
Delbaz, Ali
Chen, Mo
Basu, Souptik
St John, James A
Huygens, Flavia
Ekberg, Jenny AK
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
Size
File type(s)
Location
Abstract
Staphylococcus aureus infections of the central nervous system are serious and can be fatal. S. aureus is commonly present in the nasal cavity, and after injury to the nasal epithelium it can rapidly invade the brain via the olfactory nerve. The trigeminal nerve constitutes another potential route of brain infection. The glia of these nerves, olfactory ensheathing cells (OECs) and trigeminal nerve Schwann cells (TgSCs), as well as astrocytes populating the glia limitans layer, can phagocytose bacteria. Whilst some glial responses to S. aureus have been studied, the specific responses of different glial types are unknown. Here, we compared how primary mouse OECs, TgSCs, astrocytes and microglia responded to S. aureus. All glial types internalized the bacteria within phagolysosomes, and S. aureus-conjugated BioParticles could be tracked with subtle but significant differences in time-course of phagocytosis between glial types. Live bacteria could be isolated from all glia after 24 h in culture, and microglia, OECs and TgSCs exhibited better protection against intracellular S. aureus survival than astrocytes. All glial types responded to the bacteria by cytokine secretion. Overall, OECs secreted the lowest level of cytokines, suggesting that these cells, despite showing strong capacity for phagocytosis, have immunomodulatory functions that can be relevant for neural repair.
Journal Title
Scientific Reports
Conference Title
Book Title
Edition
Volume
11
Issue
1
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
© The Author(s) 2021. Tis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
Item Access Status
Note
Access the data
Related item(s)
Subject
Microbiology
Neurosciences
Persistent link to this record
Citation
Choudhury, IN; Chacko, A; Delbaz, A; Chen, M; Basu, S; St John, JA; Huygens, F; Ekberg, JAK, Antimicrobial responses of peripheral and central nervous system glia against Staphylococcus aureus, Scientific Reports, 2021, 11 (1), pp. 10722