PhaG-mediated synthesis of poly(3-hydroxyalkanoates) consisting of medium-chain-length constituents from nonrelated carbon sources in recombinant Pseudomonas fragi

Loading...
Thumbnail Image
File version

Version of Record (VoR)

Author(s)
Fiedler, S
Steinbuchel, A
Rehm, BHA
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2000
Size
File type(s)
Location
License
Abstract

Recently, a new metabolic link between fatty acid de novo biosynthesis and biosynthesis of poly(3-hydroxy-alkanoate) consisting of medium-chain-length constituents (C6 to C14) (PHAMCL), catalyzed by the 3-hydroxydecanoyl-[acyl-carrier-protein]:CoA transacylase (PhaG), has been identified in Pseudomonas putida (B. H. A. Rehm, N. Krüger, and A. Steinbüchel, J. Biol. Chem. 273:24044–24051, 1998). To establish this PHA-biosynthetic pathway in a non-PHA-accumulating bacterium, we functionally coexpressedphaC1 (encoding PHA synthase 1) from Pseudomonas aeruginosa and phaG (encoding the transacylase) fromP. putida in Pseudomonas fragi. The recombinant strains of P. fragi were cultivated on gluconate as the sole carbon source, and PHA accumulation to about 14% of the total cellular dry weight was achieved. The respective polyester was isolated, and GPC analysis revealed a weight average molar mass of about 130,000 g mol−1 and a polydispersity of 2.2. The PHA was composed mainly (60 mol%) of 3-hydroxydecanoate. These data strongly suggested that functional expression of phaC1 andphaG established a new pathway for PHAMCLbiosynthesis from nonrelated carbon sources in P. fragi. When fatty acids were used as the carbon source, no PHA accumulation was observed in PHA synthase-expressing P. fragi, whereas application of the β-oxidation inhibitor acrylic acid mediated PHAMCL accumulation. The substrate for the PHA synthase PhaC1 is therefore presumably directly provided through the enzymatic activity of the transacylase PhaG by the conversion of (R)-3-hydroxydecanoyl-ACP to (R)-3-hydroxydecanoyl-CoA when the organism is cultivated on gluconate. Here we demonstrate for the first time the establishment of PHAMCL synthesis from nonrelated carbon sources in a non-PHA-accumulating bacterium, employing fatty acid de novo biosynthesis and the enzymes PhaG (a transacylase) and PhaC1 (a PHA synthase).

Journal Title

Applied and Environmental Microbiology

Conference Title
Book Title
Edition
Volume

66

Issue

5

Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement

© 2000 American Society for Microbiology. The attached file is reproduced here in accordance with the copyright policy of the publisher. Please refer to the journal's website for access to the definitive, published version.

Item Access Status
Note
Access the data
Related item(s)
Subject

Microbiology not elsewhere classified

Persistent link to this record
Citation
Collections