Thioredoxin system inhibitors as mediators of apoptosis for cancer therapy

No Thumbnail Available
File version
Author(s)
Tonissen, Kathryn F
Di Trapani, Giovanna
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)

Stephen Ralph and Jiri Neuzil

Date
2009
Size
File type(s)
Location
License
Abstract

The thioredoxin (Trx) system is a major antioxidant system integral to maintaining the intracellular redox state. It contains Trx, a redox active protein, which regulates the activity of various enzymes including those that function to counteract oxidative stress within the cell. Trx can also scavenge reactive oxygen species (ROS) and directly inhibits pro-apoptotic proteins such as apoptosis signal-regulating kinase 1 (ASK1). The oxidized form of Trx is reduced by thioredoxin reductase (TrxR). The cytoplasm and mitochondria contain equivalent Trx systems and inhibition of either system can lead to activation of apoptotic signaling pathways. There are a number of inhibitors with chemotherapy applications that target either Trx or TrxR to induce apoptosis in cancer cells. Suberoylanilide hydroxamic acid (SAHA) is effective against many cancer cells and functions by up-regulating an endogenous inhibitor of Trx. Other compounds target the selenocysteine-containing active site of TrxR. These include gold compounds, platinum compounds, arsenic trioxide, motexafin gadolinium, nitrous compounds and various flavonoids. Inhibition of TrxR leads to an accumulation of oxidized Trx resulting in cellular conditions that promote apoptosis. In addition, some compounds also convert TrxR to a ROS generating enzyme. The role of Trx system inhibitors in cancer therapy is discussed in this review.

Journal Title

Molecular Nutrition & Food Research

Conference Title
Book Title
Edition
Volume

53

Issue

1

Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note
Access the data
Related item(s)
Subject

Biochemistry and cell biology not elsewhere classified

Food sciences

Nutrition and dietetics

Persistent link to this record
Citation
Collections