CO2 reforming of CH4 in single and double dielectric barrier discharge reactors: Comparison of discharge characteristics and product distribution

No Thumbnail Available
File version
Author(s)
Mei, Danhua
Duan, Gehui
Fu, Junhui
Liu, Shiyun
Zhou, Renwu
Zhou, Rusen
Fang, Zhi
Cullen, Patrick J
Ostrikov, Kostya Ken
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2021
Size
File type(s)
Location
License
Abstract

CO2 reforming of CH4 in a non-thermal plasma process (e.g., dielectric barrier discharge, DBD) possesses dual benefits for our environment and energy needs. However, this process is strongly influenced by the dielectric structure of the DBD. Here, plasma CO2 reforming of CH4 has been performed in both single-dielectric and double-dielectric DBD (DBD-SD and DBD-DD) reactors under atmospheric pressure. Electrical and optical characterization, along with temperature measurements are performed to understand the influence of the DBD-SD and DBD-DD designs. Reactor performance for reforming is compared under different discharge powers. The results show that CO2/CH4 discharges in both DBD-SD and DBD-DD display typical filamentary microdischarges. Compared with the DBD-DD, the DBD-SD reactor exhibits a larger number and higher intensity of current pulses, which leads to a higher electron density and formation of reactive species. The highest conversion of CO2 (24.1 %) and CH4 (49.2 %) are achieved in the DBD-SD at a high discharge power (75 W). Moreover, higher selectivities of gaseous products are obtained in the DBD-DD, while the DBD-SD reactor shows a higher selectivity for liquid products, mainly including methanol and acetic acid. The highest energy efficiencies for reactant conversion (0.34 mmol/kJ), gaseous and liquid production formation (0.26 mmol/kJ and 0.015 mmol/kJ) are achieved in the DBD-SD reactor at a low discharge power (22 W), resulting from the low energy loss to the environment. However, the carbon deposited on the inner electrode surface in the DBD-SD would have an adverse influence on the reactor's performance. Further research on the optimization of the DBD reactor to establish an efficient plasma-catalysis system is required for industrial applications.

Journal Title

Journal of CO2 Utilization

Conference Title
Book Title
Edition
Volume

53

Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note
Access the data
Related item(s)
Subject

Inorganic chemistry

Chemical engineering

Science & Technology

Physical Sciences

Chemistry, Multidisciplinary

Persistent link to this record
Citation

Mei, D; Duan, G; Fu, J; Liu, S; Zhou, R; Zhou, R; Fang, Z; Cullen, PJ; Ostrikov, KK, CO2 reforming of CH4 in single and double dielectric barrier discharge reactors: Comparison of discharge characteristics and product distribution, Journal of CO2 Utilization, 2021, 53, pp. 101703

Collections