Effective and Selective Catalysts for Cinnamaldehyde Hydrogenation: Hydrophobic Hybrids of Metal-Organic Frameworks, Metal Nanoparticles, and Micro- and Mesoporous Polymers

No Thumbnail Available
File version
Author(s)
Yuan, Kuo
Song, Tianqun
Wang, Dawei
Zhang, Xiaotao
Gao, Xiong
Zou, Ye
Dong, Huanli
Tang, Zhiyong
Hu, Wenping
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2018
Size
File type(s)
Location
License
Abstract

Metal–organic frameworks (MOFs) as selectivity regulators for catalytic reactions have attracted much attention, especially MOFs and metal nanoparticle (NP) shelled structures, e.g., MOFs@NPs@MOFs. Nevertheless, making hydrophilic MOF shells for gathering hydrophobic reactants is challenging. Described here is a new and viable approach employing conjugated micro‐ and mesoporous polymers with iron(III) porphyrin (FeP‐CMPs) as a new shell to fabricate MIL‐101@Pt@FeP‐CMP. It is not only hydrophobic and porous for enriching reactants, but also possesses iron sites to activate C=O bonds, thereby regulating the selectivity for cinnamyl alcohol in the hydrogenation of cinnamaldehyde. Interestingly, MIL‐101@Pt@FeP‐CMPsponge can achieve a high turnover frequency ( 1516.1 h−1), with 97.3 % selectivity for cinnamyl alcohol at 97.6 % conversion.

Journal Title

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION

Conference Title
Book Title
Edition
Volume

57

Issue

20

Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note
Access the data
Related item(s)
Subject

Chemical sciences

Persistent link to this record
Citation
Collections