Average entanglement dynamics in open two-qubit systems with continuous monitoring

Loading...
Thumbnail Image
File version

Accepted Manuscript (AM)

Author(s)
Guevara, Ivonne
Viviescas, Carlos
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2014
Size
File type(s)
Location
License
Abstract

We present a comprehensive implementation of the quantum trajectory theory for the description of the entanglement dynamics in a Markovian open quantum system made of two qubits. We introduce the average concurrence to characterize the entanglement in the system and derive a deterministic evolution equation for it that depends on the ways in which information is read from the environment. This buildt-in flexibility of the method is used to address two actual issues in quantum information: entanglement protection and entanglement estimation. We identify general physical situations in which an entanglement protection protocol based on local monitoring of the environment can be implemented. Additionally, we methodically find unravelings of the system dynamics providing analytical tight bounds for the unmonitored entanglement in the system at all times. We conclude by showing the independence of the method from the choice of entanglement measure.

Journal Title

Physical Review A

Conference Title
Book Title
Edition
Volume

90

Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement

© 2014 American Physical Society. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal's website for access to the definitive, published version.

Item Access Status
Note
Access the data
Related item(s)
Subject

Mathematical sciences

Physical sciences

Quantum information, computation and communication

Chemical sciences

Persistent link to this record
Citation
Collections