Voluntary running in mice beneficially modulates myocardial ischemic tolerance, signaling kinases, and gene expression patterns

No Thumbnail Available
File version
Author(s)
Budiono, Boris P
Hoe, Louise E See
Peart, Jason N
Sabapathy, Surendran
Ashton, Kevin J
Haseler, Luke J
Headrick, John P
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2012
Size
File type(s)
Location
License
Abstract

Exercise triggers hormesis, conditioning hearts against damaging consequences of subsequent ischemia-reperfusion (I/R). We test whether "low-stress" voluntary activity modifies I/R tolerance and molecular determinants of cardiac survival. Male C57BL/6 mice were provided 7-day access to locked (7SED) or rotating (7EX) running-wheels before analysis of cardiac prosurvival (Akt, ERK 1/2) and prodeath (GSK3ߩ kinases, transcriptomic adaptations, and functional tolerance of isolated hearts to 25-min ischemia/45-min reperfusion. Over 7 days, 7EX mice increased running from 2.1 ᠰ.2 to 5.3 ᠰ.3 km/day (mean speed 38 ᠲ m/min), with activity improving myocardial I/R tolerance: 7SED hearts recovered 43 ᠳ% of ventricular force with diastolic contracture of 33 ᠳ mmHg, whereas 7EX hearts recovered 63 ᠵ% of force with diastolic dysfunction reduced to 23 ᠲ mmHg (P < 0.05). Cytosolic expression (total protein) of Akt and GSK3ߠwas unaltered, while ERK 1/2 increased 30% in 7EX vs. 7SED hearts. Phosphorylation of Akt and ERK 1/2 was unaltered, whereas GSK3ߠphosphorylation increased ~90%. Microarray interrogation identified significant changes (=1.3-fold expression change, =5% FDR) in 142 known genes, the majority (92%) repressed. Significantly modified paths/networks related to inflammatory/immune function (particularly interferon-dependent), together with cell movement, growth, and death. Of only 14 induced transcripts, 3 encoded interrelated sarcomeric proteins titin, a-actinin, and myomesin-2, while transcripts for protective actin-stabilizing ND1-L and activator of mitochondrial biogenesis ALAS1 were also induced. There was no transcriptional evidence of oxidative heat-shock or other canonical "stress" responses. These data demonstrate that relatively brief voluntary activity substantially improves cardiac ischemic tolerance, an effect independent of shifts in Akt, but associated with increased total ERK 1/2 and phospho-inhibition of GSK3߮ Transcriptomic data implicate inflammatory/immune and sarcomeric modulation in activity-dependent protection.

Journal Title

American Journal of Physiology – Regulatory, Integrative and Comparative Physiology

Conference Title
Book Title
Edition
Volume

302

Issue

9

Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement

Self-archiving of the author-manuscript version is not yet supported by this journal. Please refer to the journal link for access to the definitive, published version or contact the authors for more information.

Item Access Status
Note
Access the data
Related item(s)
Subject

Biological sciences

Biomedical and clinical sciences

Cardiology (incl. cardiovascular diseases)

Health sciences

Persistent link to this record
Citation
Collections