Inter-biome comparison of factors controlling stream metabolism

No Thumbnail Available
File version
Author(s)
Mulholland, PJ
Fellows, CS
Tank, JL
Grimm, NB
Webster, JR
Hamilton, SK
Marti, E
Ashkenas, L
Bowden, WB
Dodds, WK
McDowell, WH
Paul, MJ
Peterson, BJ
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2001
Size
File type(s)
Location
License
Abstract
  1. We studied whole-ecosystem metabolism in eight streams from several biomes in North America to identify controls on the rate of stream metabolism over a large geographic range. The streams studied had climates ranging from tropical to cool-temperate and from humid to arid and were all relatively uninﵥnced by human disturbances. 2. Rates of gross primary production (GPP), ecosystem respiration (R) and net ecosystem production (NEP) were determined using the open-system, two-station diurnal oxygen change method. 3. Three general patterns in metabolism were evident among streams: (1) relatively high GPP with positive NEP (i.e. net oxygen production) in early afternoon, (2) moderate primary production with a distinct peak in GPP during daylight but negative NEP at all times and (3) little or no evidence of GPP during daylight and a relatively constant and negative NEP over the entire day. 4. Gross primary production was most strongly correlated with photosynthetically active radiation (PAR). A multiple regression model that included log PAR and stream water soluble reactive phosphorus (SRP) concentration explained 90%of the variation in log GPP. 5. Ecosystem respiration was signintly correlated with SRP concentration and size of the transient storage zone and, together, these factors explained 73% of the variation in R. The rate of R was poorly correlated with the rate of GPP. 6. Net ecosystem production was signintly correlated only with PAR, with 53% of the variation in log NEP explained by log PAR. Only Sycamore Creek, a desert stream in Arizona, had positive NEP (GPP: R > 1), supporting the idea that streams are generally net sinks rather than net sources of organic matter.
Journal Title

Freshwater Biology

Conference Title
Book Title
Edition
Volume

46

Issue

11

Thesis Type
Degree Program
School
Publisher link
DOI
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note
Access the data
Related item(s)
Subject

Environmental sciences

Biological sciences

Persistent link to this record
Citation
Collections