The effect of contact/collision sport participation without concussion on neurometabolites: A systematic review and meta-analysis of magnetic resonance spectroscopy studies
File version
Version of Record (VoR)
Author(s)
Irwin, Christopher
Peek, Aimie L
McGregor, Iain S
Desbrow, Ben
McCartney, Danielle
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
Size
File type(s)
Location
Abstract
The aim of this study was to systematically review prior research investigating the effects of contact/collision sport participation on neurometabolite levels in the absence of concussion. Four online databases were searched to identify studies that measured neurometabolite levels in contact/collision sport athletes (without concussion) using proton (1 H) or phosphorus (31 P) magnetic resonance spectroscopy (MRS). All study designs were acceptable for inclusion. Meta-analytic procedures were used to quantify the effect of contact/collision sport participation on neurometabolite levels and explore the impact of specific moderating factors (where sufficient data were available). Narrative synthesis was used to describe outcomes that could not be meta-analysed. Nine observational studies involving 300 contact/collision sport athletes were identified. Six studies (providing 112 effect estimates) employed longitudinal (cohort) designs and three (that could not be meta-analysed) employed case-control designs. N-acetylaspartate (NAA; g = -0.331, p = 0.013) and total creatine (tCr; creatine + phosphocreatine; g = -0.524, p = 0.029), but not glutamate-glutamine (Glx), myo-inositol (mI) or total choline (tCho; choline-containing compounds; p's > 0.05), decreased between the pre-season and mid-/post-season period. Several moderators were statistically significant, including: sex (Glx: 6 female/23 male, g = -0.549, p = 0.013), sport played (Glx: 22 American football/4 association football [soccer], g = 0.724, p = 0.031), brain region (mI: 2 corpus callosum/9 motor cortex, g = -0.804, p = 0.015), and the MRS quantification approach (mI: 18 absolute/3 tCr-referenced, g = 0.619, p = 0.003; and tCho: 18 absolute/3 tCr-referenced, g = 0.554, p = 0.005). In case-control studies, contact/collision sport athletes had higher levels of mI, but not NAA or tCr compared to non-contact sport athletes and non-athlete controls. Overall, this review suggests that contact/collision sport participation has the potential to alter neurometabolites measured via 1 H MRS in the absence of concussion. However, further research employing more rigorous and consistent methodologies (e.g. interventional studies with consistent 1 H MRS pulse sequences and quantifications) is required to confirm and better understand the clinical relevance of observed effects.
Journal Title
Journal of Neurochemistry
Conference Title
Book Title
Edition
Volume
Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
© 2023 The Authors. Journal of Neurochemistry published by John Wiley & Sons Ltd on behalf of International Society for Neurochemistry. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Item Access Status
Note
This publication has been entered in Griffith Research Online as an advanced online version.
Access the data
Related item(s)
Subject
Biochemistry and cell biology
Neurosciences
brain chemistry
contact sport
neuroimaging
subconcussive impacts
Persistent link to this record
Citation
Delang, N; Irwin, C; Peek, AL; McGregor, IS; Desbrow, B; McCartney, D, The effect of contact/collision sport participation without concussion on neurometabolites: A systematic review and meta-analysis of magnetic resonance spectroscopy studies, Journal of Neurochemistry, 2023