Site-specific glycan-peptide analysis for determination of N-glycoproteome heterogeneity

No Thumbnail Available
File version
Author(s)
Parker, Benjamin L.
Thaysen-Andersen, Morten
Solis, Nestor
Scott, Nichollas E.
Larsen, Martin R.
Graham, Mark E.
Packer, Nicolle H.
Cordwell, Stuart J.
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2013
Size
File type(s)
Location
License
Abstract

A combined glycomics and glycoproteomics strategy was developed for the site-specific analysis of N-linked glycosylation heterogeneity from a complex mammalian protein mixture. Initially, global characterization of the N-glycome was performed using porous graphitized carbon liquid chromatography–tandem mass spectrometry (PGC-LC–MS/MS) and the data used to create an N-glycan modification database. In the next step, tryptic glycopeptides were enriched using zwitterionic hydrophilic interaction liquid chromatography (Zic-HILIC) and fractionated by reversed-phase liquid chromatography (RPLC; pH 7.9). The resulting fractions were each separated into two equal aliquots. The first set of aliquots were treated with peptide-N-glycosidase F (PNGase F) to remove N-glycans and the former N-glycopeptides analyzed by nano-RPLC-MS/MS (pH 2.7) and identified by Mascot database search. This enabled the creation of a glycopeptide-centric concatenated database for each fraction. The second set of aliquots was analyzed directly by nanoRPLC-MS/MS (pH 2.7), employing fragmentation by CID and HCD. The assignment of glycan compositions to peptide sequences was achieved by searching the N-glycopeptide HCD MS/MS spectra against the glycopeptide-centric concatenated databases employing the N-glycan modification database. CID spectra were used to assign glycan structures identified in the glycomic analysis to peptide sequences. This multidimensional approach allowed confident identification of 863 unique intact N-linked glycopeptides from 161 rat brain glycoproteins.

Journal Title

Journal of Proteome Research

Conference Title
Book Title
Edition
Volume

12

Issue

12

Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note
Access the data
Related item(s)
Subject

Chemical sciences

Biological sciences

Biochemistry and cell biology not elsewhere classified

Persistent link to this record
Citation
Collections