More efficient two-mode stochastic local search for random 3-satisfiability
File version
Author(s)
Luo, Chuan
Cai, Shaowei
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
Size
File type(s)
Location
License
Abstract
Stochastic local search (SLS) is a popular paradigm in incomplete solving for the Boolean satisfiability problem (SAT). Most SLS solvers for SAT switch between two modes, i.e., the greedy (intensification) mode and the diversification mode. However, the performance of these two-mode SLS algorithms lags far behind on solving random 3-satisfiability (3-SAT) problem, which is a significant special case of the SAT problem. In this paper, we propose a new hybrid scoring function called M C based on a linear combination of a greedy property m a k e and a diversification property C o n f T i m e s, and then utilize M C to develop a new two-mode SLS solver called CCMC. To evaluate the performance of CCMC, we conduct extensive experiments to compare CCMC with five state-of-the-art two-mode SLS solvers (i.e., Sparrow2011, Sattime2011, EagleUP, gNovelty+PCL and CCASat) on a broad range of random 3-SAT instances, including all large 3-SAT ones from SAT Competition 2009 and SAT Competition 2011 as well as 200 generated satisfiable huge random 3-SAT ones. The experiments illustrate that CCMC obviously outperforms its competitors, indicating the effectiveness of CCMC. We also analyze the effectiveness of the underlying ideas in CCMC and further improve the performance of CCMC on solving random 5-SAT instances.
Journal Title
Applied Intelligence
Conference Title
Book Title
Edition
Volume
41
Issue
3
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note
Access the data
Related item(s)
Subject
Artificial intelligence not elsewhere classified