Exploiting Probabilistic Knowledge under Uncertain Sensing for Efficient Robot Behaviour

Loading...
Thumbnail Image
File version
Author(s)
Hanheide, M.
Gretton, C.
Dearden, R.
Hawes, N.
Wyatt, J.
Pronobis, A.
Aydemir, A.
G¨obelbecker, M.
Zender, H.
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)

Toby Walsh

Date
2011
Size

1639528 bytes

File type(s)

application/pdf

Location

Catalonia, Spain

License
Abstract

Robots must perform tasks efficiently and reliably while acting under uncertainty. One way to achieve efficiency is to give the robot commonsense knowledge about the structure of the world. Reliable robot behaviour can be achieved by modelling the uncertainty in the world probabilistically. We present a robot system that combines these two approaches and demonstrate the improvements in efficiency and reliability that result. Our first contribution is a probabilistic relational model integrating common-sense knowledge about the world in general, with observations of a particular environment. Our second contribution is a continual planning system which is able to plan in the large problems posed by that model, by automatically switching between decision-theoretic and classical procedures. We evaluate our system on object search tasks in two different real-world indoor environments. By reasoning about the trade-offs between possible courses of action with different informational effects, and exploiting the cues and general structures of those environments, our robot is able to consistently demonstrate efficient and reliable goal-directed behaviour.

Journal Title
Conference Title

Twenty-Second International Joint Conference on Artificial Intelligence Proceedings

Book Title
Edition
Volume
Issue
Thesis Type
Degree Program
School
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement

© 2011 International Joint Conference on Artificial Intelligence. The attached file is reproduced here in accordance with the copyright policy of the publisher. Please refer to the Conference's website for access to the definitive, published version.

Item Access Status
Note
Access the data
Related item(s)
Subject

Artificial Intelligence and Image Processing not elsewhere classified

Persistent link to this record
Citation