Effects of caffeine on neuromuscular function in a non-fatigued state and during fatiguing exercise

No Thumbnail Available
File version
Author(s)
Mesquita, Ricardo NO
Cronin, Neil J
Kyrolainen, Heikki
Hintikka, Jukka
Avela, Janne
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2020
Size
File type(s)
Location
License
Abstract

New Findings: What is the central question of the study? What are the effects of caffeine on neuromuscular function in a non-fatigued state and during fatiguing exercise? What is the main finding and its importance? In a non-fatigued state, caffeine decreased the duration of the silent period evoked by transcranial magnetic stimulation. Caffeine-induced reduction of inhibitory mechanisms in the central nervous system before exercise was associated with an increased performance. Individuals who benefit from caffeine ingestion may experience lower perception of effort during exercise and an accelerated recovery of M-wave amplitude postfatigue. This study elucidates the mechanisms of action of caffeine and demonstrates that inter-individual variability of its effects on neuromuscular function is a fruitful area for further work. Abstract: Caffeine enhances exercise performance, but its mechanisms of action remain unclear. In this study, we investigated its effects on neuromuscular function in a non-fatigued state and during fatiguing exercise. Eighteen men participated in this randomized, double-blind, placebo-controlled crossover trial. Baseline measures included plantarflexion force, drop jump, squat jump, voluntary activation of triceps surae muscle, soleus muscle contractile properties, M-wave, α-motoneuron excitability (H-reflex), corticospinal excitability, short-interval intracortical inhibition, intracortical facilitation, silent period evoked by transcranial magnetic stimulation (SP) and plasma potassium and caffeine concentrations. Immediately after baseline testing, participants ingested caffeine (6 mg·kg−1) or placebo. After a 1-h rest, baseline measures were repeated, followed by a fatiguing stretch–shortening cycle exercise (sets of 40 bilateral rebound jumps on a sledge apparatus) until task failure. Neuromuscular testing was carried out throughout the fatigue protocol and afterwards. Caffeine enhanced drop jump height (by 4.2%) and decreased the SP (by 12.6%) in a non-fatigued state. A caffeine-related decrease in SP and short-interval intracortical inhibition before the fatiguing activity was associated with an increased time to task failure. The participants who benefitted from an improved performance on the caffeine day reported a significantly lower sense of effort during exercise and had an accelerated postexercise recovery of M-wave amplitude. Caffeine modulates inhibitory mechanisms of the CNS, recovery of M-wave amplitude and perception of effort. This study lays the groundwork for future examinations of differences in caffeine-induced neuromuscular changes between those who are deemed to benefit from caffeine ingestion and those who are not.

Journal Title

Experimental Physiology

Conference Title
Book Title
Edition
Volume

105

Issue

4

Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note
Access the data
Related item(s)
Subject

Zoology

Sports science and exercise

Medical physiology

Science & Technology

Life Sciences & Biomedicine

Physiology

central fatigue

peripheral fatigue

Persistent link to this record
Citation

Mesquita, RNO; Cronin, NJ; Kyrolainen, H; Hintikka, J; Avela, J, Effects of caffeine on neuromuscular function in a non-fatigued state and during fatiguing exercise, Experimental Physiology, 2020, 105 (4), pp. 690-706

Collections