Advanced Inorganic Nanoarchitectures from Oriented Self-Assembly

No Thumbnail Available
File version
Author(s)
Lu, Chenguang
Tang, Zhiyong
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2016
Size
File type(s)
Location
License
Abstract

Complex and well-defined nanostructures are promising for emerging properties with broad applications. Self-assembly processes driven by diverse interactions generate varied nanostructures by using versatile nanocrystals as building blocks, while oriented attachment growth allows individual nanocrystals to be integrated and fused into highly anisotropic structures. By a combination of self-assembly technique and oriented attachment growth, many advanced nanostructures can be made. Such approaches can be viewed as an architecture of the nanoscale counterparts in the microworld, named as nanoarchitectures.

Journal Title

Advanced Materials

Conference Title
Book Title
Edition
Volume

28

Issue

6

Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note
Access the data
Related item(s)
Subject

Physical sciences

Chemical sciences

Engineering

Materials engineering not elsewhere classified

Persistent link to this record
Citation
Collections