Strategies for Improving the Functionality of Zeolitic Imidazolate Frameworks: Tailoring Nanoarchitectures for Functional Applications

Loading...
Thumbnail Image
File version

Accepted Manuscript (AM)

Author(s)
Kaneti, Yusuf Valentino
Dutta, Saikat
Hossain, Md SA
Shiddiky, Muhammad JA
Tung, Kuo-Lun
Shieh, Fa-Kuen
Tsung, Chia-Kuang
Wu, Kevin C-W
Yamauchi, Yusuke
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2017
Size
File type(s)
Location
License
Abstract

Zeolitic imidazolate frameworks (ZIFs), a subclass of metal–organic frameworks (MOFs) built with tetrahedral metal ions and imidazolates, offer permanent porosity and high thermal and chemical stabilities. While ZIFs possess some attractive physical and chemical properties, it remains important to enhance their functionality for practical application. Here, an overview of the extensive strategies which have been developed to improve the functionality of ZIFs is provided, including linker modifications, functional hybridization of ZIFs via the encapsulation of guest species (such as metal and metal oxide nanoparticles and biomolecules) into ZIFs, and hybridization with polymeric matrices to form mixed matrix membranes for industrial gas and liquid separations. Furthermore, the developed strategies for achieving size and shape control of ZIF nanocrystals are considered, which are important for optimizing the textural characteristics as well as the functional performance of ZIFs and their derived materials/hybrids. Moreover, the recent trends of using ZIFs as templates for the derivation of nanoporous hybrid materials, including carbon/metal, carbon/oxide, carbon/sulfide, and carbon/phosphide hybrids, are discussed. Finally, some perspectives on the potential future research directions and applications for ZIFs and ZIF-derived materials are offered.

Journal Title

Advanced Materials

Conference Title
Book Title
Edition
Volume
Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement

© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. This is the peer reviewed version of the following article: Strategies for Improving the Functionality of Zeolitic Imidazolate Frameworks: Tailoring Nanoarchitectures for Functional Applications, Advanced Materials, 2017 which has been published in final form at 10.1002/adma.201700213. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving (http://olabout.wiley.com/WileyCDA/Section/id-820227.html#terms)

Item Access Status
Note

This publication has been entered into Griffith Research Online as an Advanced Online Version.

Access the data
Related item(s)
Subject

Physical sciences

Chemical sciences

Engineering

Nanotechnology not elsewhere classified

Persistent link to this record
Citation
Collections