Redox-active and Redox-silent Compounds: Synergistic Therapeutics in Cancer
File version
Author(s)
Santarelli, L
Alleva, R
Dong, Lan-Feng
Neuzil, J
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
Size
File type(s)
Location
License
Abstract
Tumours exhibit higher basal levels of reactive oxygen species (ROS) and altered redox environment compared to normal cells. Excessive level of ROS can be toxic to these cells, thus they become more vulnerable to damage by further ROS insults induced by pharmacological agents. However, the upregulation of antioxidant capacity in adaptation to intrinsic oxidative stress in cancer cells can confer drug resistance. Therefore, abrogation of such drugresistant mechanisms by redox modulation could have significant therapeutic implications. Many redox-modulating agents have been developed. The redox-active system epitomised by ascorbate-driven quinone redox cycling, and the group of redox-silent vitamin E analogues represented by α-tocopheryl succinate have been shown to induce selective cancer cell death in different types of cancer. These compounds synergistically act by destabilising organelles like mitochondria, unleashing their apoptogenic potential, which results in efficient death of malignant cells and suppression of tumour growth. Consistent with this notion, clinical trials that aim to examine the therapeutic performance of novel redoxmodulating drugs in cancer patients are currently under way.
Journal Title
Current Medicinal Chemistry
Conference Title
Book Title
Edition
Volume
22
Issue
5
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note
Access the data
Related item(s)
Subject
Medicinal and biomolecular chemistry
Medicinal and biomolecular chemistry not elsewhere classified
Biochemistry and cell biology
Pharmacology and pharmaceutical sciences