An Evidence-Based Framework for Strengthening Exercises to Prevent Hamstring Injury

No Thumbnail Available
File version
Author(s)
Bourne, Matthew N
Timmins, Ryan G
Opar, David A
Pizzari, Tania
Ruddy, Joshua D
Sims, Casey
Williams, Morgan D
Shield, Anthony J
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2018
Size
File type(s)
Location
License
Abstract

Strength training is a valuable component of hamstring strain injury prevention programmes; however, in recent years a significant body of work has emerged to suggest that the acute responses and chronic adaptations to training with different exercises are heterogeneous. Unfortunately, these research findings do not appear to have uniformly influenced clinical guidelines for exercise selection in hamstring injury prevention or rehabilitation programmes. The purpose of this review was to provide the practitioner with an evidence-base from which to prescribe strengthening exercises to mitigate the risk of hamstring injury. Several studies have established that eccentric knee flexor conditioning reduces the risk of hamstring strain injury when compliance is adequate. The benefits of this type of training are likely to be at least partly mediated by increases in biceps femoris long head fascicle length and improvements in eccentric knee flexor strength. Therefore, selecting exercises with a proven benefit on these variables should form the basis of effective injury prevention protocols. In addition, a growing body of work suggests that the patterns of hamstring muscle activation diverge significantly between different exercises. Typically, relatively higher levels of biceps femoris long head and semimembranosus activity have been observed during hip extension-oriented movements, whereas preferential semitendinosus and biceps femoris short head activation have been reported during knee flexion-oriented movements. These findings may have implications for targeting specific muscles in injury prevention programmes. An evidence-based approach to strength training for the prevention of hamstring strain injury should consider the impact of exercise selection on muscle activation, and the effect of training interventions on hamstring muscle architecture, morphology and function. Most importantly, practitioners should consider the effect of a strength training programme on known or proposed risk factors for hamstring injury.

Journal Title

Sports Medicine

Conference Title
Book Title
Edition
Volume

48

Issue

2

Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note
Access the data
Related item(s)
Subject

Mechanical engineering

Sports science and exercise

Sports science and exercise not elsewhere classified

Curriculum and pedagogy

Persistent link to this record
Citation
Collections